Publications
Research contributions in AI, Machine Learning, and Computational Biology
Year:
[2026] [2025] [2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [Previous]
Topic:
[All] [Computational Biology] [ML & DL] [Statistics]
---2026---
- Chen K, Wang H. Discovery of disease relationships via transcriptomic signature analysis powered by agentic AI , in proceedings of Pacific Symposium on Biocomputing (PSB) 2026. PSB 2026
---2025---
- Deng C, Duan Y, Jin X, Chang H, Tian Y, Liu H, Wang Y, Gao K, Zou H P, Jin Y, Xiao Y, Wu S, Xie Z, Lyu W, He S, Cheng L, Wang H, Zhuang J. Deconstructing the ethics of large language models from long-standing issues to new-emerging dilemmas: a survey , published in AI and Ethics, Volume 5, pages 4745–4771, August 2025. AI and Ethics 2025
- Jin H, Zhang P, Luo M, Wang H. Reasoning can hurt the inductive abilities of large language models , in proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2025. NeurIPS 2025
- Zhuang J, Jin H, Zhang Y, Kang Z, Zhang W, Dagher G G, Wang H. Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation , in Findings of the Association for Computational Linguistics: Empirical Methods in Natural Language Processing (EMNLP) 2025. EMNLP Findings 2025
- Xue Z, Wang H, Qin Y, Pedarsani R. Conflict-Aware Adversarial Training , in proceedings of British Machine Vision Conference (BMVC) 2025. BMVC 2025
- Liu H, Chen S, Zhang Y, Wang H. GenoTEX: An LLM Agent Benchmark for Automated Gene Expression Data Analysis , in proceedings of Machine Learning for Computational Biology (MLCB) 2025. MLCB 2025
- Leng J, Huang C, Huang L, Lin B Y, Cohen W W, Wang H, Huang J. CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation , in proceedings of Conference on Language Modeling (COLM) 2025. COLM 2025
- Liu H, Li Y, Xing T, Wang P, Dalal V, Li L, He J, Wang H. Dataset Distillation via the Wasserstein Metric , in proceedings of International Conference on Computer Vision (ICCV) 2025. ICCV 2025
- Huang Z, Ji Y, Lee Y, Wang H. Customizing Domain Adapters for Domain Generalization , in proceedings of International Conference on Computer Vision (ICCV) 2025. ICCV 2025
- Zheng R, Dasu V A, Wang Y O, Wang H, De la Torre F. Improving Noise Efficiency in Privacy-preserving Dataset Distillation , in proceedings of International Conference on Computer Vision (ICCV) 2025. ICCV 2025
- Xu Y, Nallamothu S, Culbertson C, Wang H. Privacy-preserving analysis of wearable device data for monitoring health risks , in proceedings of ICHI 2025 (IEEE International Conference on Healthcare Informatics). ICHI 2025
- Zhang P, Jin H, Hu L, Li X, Kang L, Luo M, Song Y, Wang H. Revolve: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization , in proceedings of International Conference on Machine Learning (ICML) 2025. ICML 2025
- Jeoung S, Ge Y, Wang H, Diesner J. Examining Alignment of Large Language Models through Representative Heuristics: The Case of Political Stereotypes , in proceedings of ICLR 2025. ICLR 2025
- Liu H, Singh A, Li Y, Wang H. Approximate Nullspace Augmented Finetuning for Robust Vision Transformers , arXiv preprint; Conference on Parsimony and Learning. CPAL 2025
- Xue E, Li Y, Liu H, Wang P, Shen Y, Wang H. Towards Adversarially Robust Dataset Distillation by Curvature Regularization , in proceedings of AAAI 2025. AAAI 2025
- Cai M, Huang Z, Li Y, Ojha U, Wang H, Lee YJ. Leveraging Large Language Models for Scalable Vector Graphics-Driven Image Understanding , in proceedings of WACV 2025. WACV 2025
---2024---
- Zhou A, Li B, Wang H. Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks , in proceedings of NeurIPS 2024. NeurIPS 2024
- Jin H, Zhou A, Menke JD, Wang H. Jailbreaking Large Language Models Against Moderation Guardrails via Cipher Characters , in proceedings of NeurIPS 2024. NeurIPS 2024
- Shah SB, Shiwakoti S, Chaudhary M, Wang H. MemeCLIP: Leveraging CLIP Representations for Multimodal Meme Classification , in proceedings of EMNLP 2024. EMNLP 2024
- Fei Y, Li Y, Zhou Z, Wang H. DiffSim: Aligning Diffusion Model and Molecular Dynamics Simulation for Blind Docking , in proceedings of BIBM 2024. BIBM 2024
- Li Y, Gao Y, Wang H. Understanding Adversarial Transferability in Federated Learning , in Transactions of Machine Learning Research. TMLR 2024
- Anzaku ET, Wang H, Van Messem A, De Neve W. Re-assessing Accuracy Degradation: A Framework for Understanding DNN Behavior on Similar-but-Non-Identical Test Datasets , in proceedings of ACML Journal Track 2024. ACML 2024
- Tam TY, Liang L, Chen K, Wang H, Wu W. A Quantitative Approach for Evaluating Disease Focus and Interpretability of Deep Learning Models for Alzheimer's Disease Classification , in proceedings of BIBM 2024. BIBM 2024
- Singh A, Wang H. Simple Unsupervised Knowledge Distillation With Space Similarity , in proceedings of ECCV 2024. ECCV 2024
- Chen R, Jin H, Liu Y, Chen J, Wang H, Sun L. EditShield: Protecting Unauthorized Image Editing by Instruction-guided Diffusion Models , in proceedings of ECCV 2024. ECCV 2024
- Jin H, Chen R, Chen J, Zheng H, Zhang Y, Wang H. CatchBackdoor: Backdoor Testing by Critical Trojan Neural Path Identification via Differential Fuzzing , in proceedings of ECCV 2024. ECCV 2024
- Chen H, Zhuang J, Yao Y, Jin W, Wang H, Xie Y, Chi CH, Choo KK. Trustworthy and Responsible AI for Information and Knowledge Management System , in proceedings of the 33rd ACM International Conference on Information and Knowledge Management. CIKM 2024
- Zhou A, Yan K, Shlapentokh-Rothman M, Wang H, Wang YX. Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language Models , in proceedings of ICML 2024. ICML 2024
- Leng J, Li Y, Wang H. Choosing Wisely and Learning Deeply: Selective Cross-Modality Distillation via CLIP for Domain Generalization , in proceedings of 2024 Transactions of Machine Learning Research TMLR 2024
- Zhang P, Liu H, Li C, Xie X, Kim S, Wang H Foundation model-oriented robustness: Robust image model evaluation with pretrained models , in proceedings of 2023 International Conference on Learning Representations. ICLR 2024
- Miranda O, Fan P, Qi X, Wang H, Brannock MD, Kosten TR, Ryan ND, Kirisci L, Wang L. DeepBiomarker2: Prediction of alcohol and substance use disorder risk in post-traumatic stress disorder patients using electronic medical records and multiple social determinants of health. , Journal of Personalized Medicine. 2024 Jan 14;14(1):94.
- Miranda O, Fan P, Qi X, Wang H, Brannock MD, Kosten T, Ryan ND, Kirisci L, Wang L. Prediction of adverse events risk in patients with comorbid post-traumatic stress disorder and alcohol use disorder using electronic medical records by deep learning models , Drug and alcohol dependence. 2024 Feb 1;255:111066.
- Zhang J, Song B, Wang H, Han B, Liu T, Liu L, Sugiyama M. BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise Learning , IEEE Transactions on Pattern Analysis and Machine Intelligence (2024). IEEE PAMI 2024
---2023---
- Lee KY, Wang H, Yook Y, Rhodes JS, Christian-Hinman CA, Tsai NP Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning. , Molecular Psychiatry. 2023 Sep;28(9):3782-94
- Zhou A, Wang J, Wang YX, Wang H. Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models. , in Neural Information Processing Systems. 2024 Feb 13;36. NeurIPS 2023
- Bao W, Wei T, Wang H, He J. Adaptive Test-Time Personalization for Federated Learning , in Neural Information Processing Systems. 2024 Feb 13;36. NeurIPS 2023
- Huang Z, Zhou A, Ling Z, Cai M, Wang H, Lee YJ. A Sentence Speaks a Thousand Images: Domain Generalization through Distilling CLIP with Language Guidance , InProceedings of the IEEE/CVF International Conference on Computer Vision 2023 (pp. 11685-11695). ICCV 2023
- Bao, W., Wang, H., Wu, J., & He, J. Optimizing the Collaboration Structure in Cross-Silo Federated Learning , in proceedings of 2023 International Conference on Machine Learning. ICML 2023
- Zhang, P., Guo, J., Li, C., Xie, Y., Kim, J. B., Zhang, Y., Xie, X., Wang, H., & Kim, S. Efficiently leveraging multi-level user intent for session-based recommendation via atten-mixer network , In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, WSDM 2023, pp. 168-176. (Best Paper Honorable Mention)
- Xiang, K., Zhang, X., She, J., Liu, J., Wang, H., Deng, S., & Jiang, S. Toward Robust Diagnosis: A Contour Attention Preserving Adversarial Defense for COVID-19 Detection , In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 3, pp. 2928-2937. AAAI 2023
- Zhang Y.* and Wang H. Photong: Generating 16-Bar Melodies from Images , AAAI 2023 Workshop creativeAI homepage 2023 (* K-12 Author)
---2022---
- Wang H., Toward Robust Machine Learning by Countering Superficial Features , Phd Thesis 2022
- Wang H., Lopez O, Xing E. P., and Wu W. Kernel Mixed Model for Transcriptome Association Study , Journal of Computational Biology 2022
- Wang, H., Huang Z., Wu X., Xing E.P. Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation , Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2022
- Wang, H., Huang Z., Zhang H., Lee Y.J., Xing E.P. Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features , Proceedings of the Uncertainty in Artificial Intelligence UAI 2022
- Wang X, Wang, H., Yang D. Measure and Improve Robustness in NLP Models: A Survey , Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics NAACL 2022
- Wang, H.*, Huang, Z.*, Huang, D., Lee, Y. J., & Xing, E. P. The Two Dimensions of Worst-Case Training and Their Integrated Effect for Out-of-Domain Generalization , Proceedings of the 2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics CVPR 2022
- Miranda, O., Fan P., Qi X., Yu Z., Ying J., Wang H., Brent D.A., Silverstein J.C., Chen Y., Wang L. DeepBiomarker: identifying important lab tests from electronic medical records for the prediction of suicide-related events among PTSD patients , Journal of personalized medicine, 12(4), 524.
- Wang H., Lopez O, Wu W., and Xing E. P., A Network-structured High-dimension Variable Selection Method with P-values, for Gene Set Prioritization with Transcriptome Association Study Guided by Regulatory Network , International Conference on Research in Computational Molecular Biology RECOMB 2022
---2021---
- Wang H., Aragam B., and Xing E. P., Tradeoffs of Linear Mixed Models in Genome-wide Association Studies , Journal of Computational Biology 29.3 (2022): 233-242
- Songwei Ge, Mishra S., Wang H, Li, C., and Jacobs. D., Robust Contrastive Learning Using Negative Samples with Diminished Semantics , Advances in Neural Information Processing Systems(NeurIPS 2021).
- Wang H., Pei F., Vanyukov MM., Bahar I., Wu W., Xing E. P., Coupled Mixed Model for Joint Genetic Analysis of Complex Disorders with Two Independently Collected Data Sets , BMC bioinformatics 22.1 (2021): 1-14
- Du X., Wang H., Zhu Z., Zeng X., Chang YW., Zhang J., and Xu M. Active Learning to Classify Macromolecular Structures in Situ for Less Supervision in Cryo-electron Tomography , Bioinformatics (2021)
---2020---
- Zheng Y., Wang H., Yang Z., Gao X., Xing E. P.,and Xu M, Poly(A)-DG: a Deep-learning-based Domain Generalization Method to Identify Cross-species Poly(A) Signal without Prior Knowledge from Target Species , PLOS Computational Biology, 16(11): e1008297
- Wang H, Huang Z., Xing E. P.,and Huang D, Self-Challenging Improves Cross-Domain Generalization , Proceedings of European Conference on Computer Vision, (ECCV 2020) (top 2% Oral)
- Wang H, Wu X., Huang Z., and Xing E. P., High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks , Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2020). (top 2% Oral)
- Ge, S., Wang, H., Alavi, A., Xing, E. and Bar-Joseph, Z, Supervised Adversarial Alignment of scRNA-seq Data , Proceedings of 24th International Conference on Research in Computational Molecular Biology(RECOMB 2020).
- Wang, H., Vanyukov, MM., Xing, EP. & Wu, W , Discovering Weaker Genetic Associations Guided by Known Associations , BMC medical genomics, 13(3), 1-10.
- Wang, H., Yue, T., Yang, J., Wu, W., & Xing, EP., Deep Mixed Model for Marginal Epistasis Detection and Population Stratification Correction in Genome-wide Association Studies , BMC bioinformatics, 20(23), 1-11..
---2019---
- Wang H, Ge S., Lipton Z. C. , and Xing E. P., Learning Robust Global Representations by Penalizing Local Predictive Power , Proceedings of Thirty-fourth Conference on Neural Information Processing Systems(NeurIPS 2019).
- Wang H, He Z., Lipton Z. C. , and Xing E. P., Learning Robust Representations by Projecting Superficial Statistics Out , Proceedings of Seventh International Conference on Learning Representations(ICLR 2019). (top 1% Oral)
- Wang H, Sun D., and Xing, E. P. What If We Simply Swap the Two Text Fragments? A Straightforward yet Effective Way to Test the Robustness of Methods to Confounding Signals in Nature Language Inference Tasks , Proceedings of Thirty-third AAAI Conference on Artificial Intelligence(AAAI 2019). (Oral)
- Wang H, Wu Z., and Xing E. P., Removing Confounding Factors Associated Weights in Deep Neural Networks Improves the Prediction Accuracy for Healthcare Applications , Proceedings of 24th Pacific Symposium on Biocomputing(PSB 2019). (Oral)
- Wang H, Liu X., Tao Y., Ye W., Jin Q., Cohen W. W., and Xing E. P., Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning , Proceedings of 24th Pacific Symposium on Biocomputing(PSB 2019).
- Xiao Y, Chen D, Wei S, Li Q, Wang H, and Xu M. Rumor Propagation Dynamic Model Based on Evolutionary Game and Anti-rumor , Nonlinear Dynamics. 2019 Jan 1;95(1):523-39.
---2018---
- Wang H, Lengerich B. J., Aragam B., and Xing E. P., Precision Lasso: Accounting for Correlations and Linear Dependencies in High-Dimensional Genomic Data , Bioinformatics, PMID: 30184048 DOI:10.1093/bioinformatics/bty750, 2018.
- Wang H, Liu X., Xiao Y., Xu M. and Xing E. P., Multiplex Confounding Factor Correction for Genomic Association Mapping with Squared Sparse Linear Mixed Model , Methods, 2018 Aug 1; 145: 33?40.
- Wang H, Aragam B. and Xing E. P., Variable Selection in Heterogeneous Datasets: A Truncated-rank Sparse Linear Mixed Model with Applications to Genome-wide Association Studies , Methods, 2018 2018 Aug 1; 145: 2?9.
- Yue, T., & Wang H, Deep Learning for Genomics: A Concise Overview , arXiv preprint arXiv:1802.00810.
---2017---
- Lee, S., Wang, H., & Xing, EP., Backward Genome-Transcriptome-phenome Association Mapping , Methods, 129, 18-23.
- Wang, H. & Raj, B., On the Origin of Deep Learning , arXiv preprint arXiv:1702.07800.
- Wang, H., Meghawat, A., Morency, L. P., & Xing, E. P., Select-Additive Learning: Improving Generalization Multimodal Sentiment Analysis , In 2018 IEEE International Conference on Multimedia and Expo(ICME 2017).
---2016---
- Yang, J., Wang, H., Zhu, J., & Xing, E. P., SeDMiD for Confusion Detection: Mind State from Time Series Brain Wave Data , In TSW workshop NIPS 2016
- Wang H, Yang, J., Multiple Confounders Correction with Regularized Linear Mixed Effect Models, with Application in Biological Processes. , in 2016 IEEE International Conference on Bioinformatics and Biomedicine.(BIBM 16)
---Previous---
- Gupta, A., Wang, H., & Ganapathiraju, M., Learning Structure in Gene Expression Data Using Deep Architectures, an Application to Gene Clustering. , in 2015 IEEE International Conference on Bioinformatics and Biomedicine.(BIBM 15)
- Moon, S., Kim, S., & Wang, H., Multimodal Transfer Deep Learning for Audio Visual Recognition , MMML Workshop NIPS 2015
- Wang, H., Raza, A. A., Lin, Y., & Rosenfeld, R., Behavior Analysis of Low-literate Users of a Viral Speech-based Telephone Service. , In Proceedings of the 4th Annual Symposium on Computing for Development.(ACM DEV 13)
- Wang, H., Li, Y., Hu, X., Yang, Y., Meng, Z., & Chang, K. M., Using EEG to Improve Massive Open Online Courses Feedback Interaction , In AIED Workshops.